MATH 119: Quiz 3

Name: \qquad
Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

1. Suppose

$$
f(x)=x(x-1) \quad g(x)=x+3
$$

Evaluate the following and expand/combine like terms:
(a) $f \circ f$

$$
\begin{aligned}
=\underbrace{(x+3)}_{a}\binom{x}{x}=(x+3) \cdot x+(x+3) \cdot 2 & =x^{2}+3 x+2 x+6 \\
& =5 x^{2}+5 x+6
\end{aligned}
$$

$$
=f(0+3)=f(3)=3 \cdot(3-1)
$$

$$
=3 \cdot 2=6
$$

$$
\begin{aligned}
& =f(f(x))=f(x(x-1))=x(x-1)(x(x-1)-1) \\
& =\underbrace{x(x-1)}_{a}\left(\begin{array}{cc}
x^{2}-x-1 \\
y & -1
\end{array}\right)=\left(x^{2}-x\right) x^{2}-\left(x^{2}-x\right) x-\left(x^{2}-x\right) \\
& =x^{4}-x^{3}-x^{3}+x^{2}-x^{2}+x \\
& \text { (b) } f \circ g \\
& =x^{4}-2 x^{3}+x \\
& =f(g(x))=f(x+3)=(x+3)((x+3)-1)
\end{aligned}
$$

2. Evaluate the following:
(a) $\sin \left(\frac{4 \pi}{3}\right)$

(1) $\bar{t}=\frac{\pi}{3}$
(2) \sin is negative in III
(b) $\cos (0)$

$$
\sin \left(\frac{4 \pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}
$$

$$
\cos (0)=\pi
$$

(c) $\tan \left(-\frac{7 \pi}{6}\right)$
(1) $\bar{t}=\frac{\pi}{6}$

(d) $\cos \left(\frac{-\pi}{3}\right)$
(1) $\bar{t}=\frac{\pi}{3}$

(2) caus is positive in TV

$$
=-\frac{\sqrt{3}}{3}
$$

$\cos \left(-\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
3. The equation of the unit circle is $x^{2}+y^{2}=1$. Why is the Pythagorean identity

$$
\sin ^{2} x+\cos ^{2} x=1
$$

true?
The identity can be written as

$$
\sin ^{2} t+\cos ^{2} t=1
$$

Any t vale results in a terminal point $P(x, y)$. Since
t(roninal points lie on the unit circle and $\sin (t)=y, \cos (t)=x$, substituting x for $\cos (t)$ and y for $\sin (t)$ in the equation of the unit circle gins the idaritity.

